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Abstract

Lakes and impoundments are important sources of greenhouse gases (GHG: i.e., CO2, CH4, N2O), yet global

emission estimates are based on regionally biased averages and elementary upscaling. We assembled the larg-

est global dataset to date on emission rates of all three GHGs and found they covary with lake size and

trophic state. Fitted models were upscaled to estimate global emission using global lake size inventories and

a remotely sensed global lake productivity distribution. Traditional upscaling approaches overestimated CO2

and N2O emission but underestimated CH4 by half. Our upscaled size-productivity weighted estimates (1.25–

2.30 Pg of CO2-equivalents annually) are nearly 20% of global CO2 fossil fuel emission with � 75% of the cli-

mate impact due to CH4. Moderate global increases in eutrophication could translate to 5–40% increases in

the GHG effects in the atmosphere, adding the equivalent effect of another 13% of fossil fuel combustion or

an effect equal to GHG emissions from current land use change.
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Scientific Significance Statement
Releases of greenhouse gases (GHG; carbon dioxide, methane, and nitrous oxide) into the atmosphere drive global climate

change. Knowing the amount of GHGs released is important for predicting how much and how fast the climate will

change. GHGs are released from natural and constructed lakes but current knowledge ignores differences in emission rates

from lakes of differing size and productivity. Our challenge was to estimate the effects of lake size and productivity on

GHG emission and combine this with global lake size and productivity distributions to calculate accurate annual GHG

emission estimates. We found that past estimates have been inaccurate and that the effects of aquatic GHG emissions on

the atmosphere is nearly 20% that of fossil fuel emissions, but will increase as waters become more productive.
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Lakes and other surface waters are globally significant

emitters of CO2, CH4, and N2O to the atmosphere (Cole

et al. 2007; Tranvik et al. 2009; Bastviken et al. 2011;

Deemer et al. 2016; Soued et al. 2016). Accurate estimates of

greenhouse gas (GHG) fluxes to and from the atmosphere

are important to understanding the global carbon (C) budget

as well as making projections of the trajectory of climate

change. Improvements in sensor technology (e.g., Eugster

et al. 2011; Gonzalez-valencia et al. 2014; Maeck et al. 2014;

Delwiche et al. 2015) and the use of statistically robust sur-

vey designs (Beaulieu et al. 2016; Wik et al. 2016) have

improved the accuracy of GHG emission rate measurements

in aquatic systems over the last decade. These advancements

and the increasing number of observations made around the

world have allowed limnologists to identify environmental

variables that control GHG emission rates across a broad

range of spatial scales. Despite improvements in our under-

standing of GHG emission rates and factors influencing

them, this information has not been combined to inform

estimates of global GHG emissions from lakes and impound-

ments (hereafter referred to as “lakes”).

Most traditional analyses of the global role of lakes as

sources of GHGs to the atmosphere have scaled local or

regional measurements to the globe by multiplying an aver-

age emission rate by the global area covered by lentic sys-

tems (Cole et al. 2007; Tranvik et al. 2009; Bastviken et al.

2011). For example, Tranvik et al. (2009) multiplied an aver-

age rate of CO2 emission from lakes and impoundments, as

determined from a literature review, by the global area of

those systems (Downing et al. 2006) to calculate a global

emission rate of 0.81 Pg C yr21. Bastviken et al. (2011)

attempted a similar analysis for CH4 emission by calculating

mean emission rates and lentic area within four latitude

zones. This global analysis indicated lake and impoundment

CH4 emissions of 69 Tg yr21 of CH4-C or about 0.85 Pg of C

as CO2 emission equivalents (using a 34-times conversion

factor for a 100-yr time-scale; Myhre et al. 2013). N2O is

another, more potent GHG emitted from aquatic systems.

Soued et al. (2016) offered a first-order approximation of the

global emission of N2O by all inland waters using a similar

traditional upscaling approach and suggested that lakes and

impoundments could be emitting 0.63 Tg of N2O-N per year.

In CO2 equivalents, this is approximately 0.08 Pg of C (using

a 298 conversion factor for a 100-yr time-scale; Myhre et al.

2013).

Estimates of global GHG emissions based on this

“traditional” average emission-extrapolated approach can be

strongly biased, however, if the emission rates are not

derived from a representative sample of lakes. For example,

estimates of CH4 flux from northern latitude lakes (i.e., Wik

et al. 2016) were substantially reduced when more recent

data from large glacial lakes in Alaska were included (Stack-

poole et al. 2017). Moreover, studies are increasingly finding

that aquatic GHG fluxes are related to certain local drivers,

which could be used to improve upscaled emission esti-

mates. For example, Lapierre et al. (2017) found that 31% of

summer CO2 concentration variability in lakes of the United

States is explained by chlorophyll a (Chl a), a proxy for sys-

tem productivity, as well as color and alkalinity. Therefore,

traditional regional estimates of CO2 emissions from these

systems would be biased if the average value was not derived

from lakes with a distribution of those variables similar to

that of all lakes in the U.S. Similarly, Rasilo et al. (2015)

report that diffusive CH4 emission rates are inversely related

to lake size in boreal Canada. Estimates of diffusive CH4

emissions for lakes across this biome would therefore be

biased unless the published data were derived from a collec-

tion of lakes with a size distribution that mirrors the true

size distribution of lakes in the boreal landscape. Ultimately,

upscaling with models that explicitly incorporate such envi-

ronmental drivers (i.e., size and productivity) is likely to pro-

duce more accurate regional or global emission estimates (see

Downing 2009).

A longstanding challenge to upscaling based on environ-

mental covariates is the limited availability of spatially

explicit data sets on lake characteristics at the global scale.

Recent advances in satellite imagery are beginning to address

this issue, however. For example, Sayers et al. (2015) report

the frequency distribution of Chl a in 80,000 lakes around

the world, covering the northern and southern hemispheres.

Since some metrics of productivity, such as Chl a and

nutrients, are potentially good predictors of CO2, CH4, and

N2O in lakes and impoundments (Beaulieu et al. 2015;

Deemer et al. 2016; DelSontro et al. 2016; Lapierre et al.

2017), the Sayers et al. (2015) data set provide a powerful

tool for upscaling GHG emission rates. Similarly, improved

satellite imagery and analytical approaches have allowed for

several estimates of the distribution of lake and impound-

ment sizes across the globe (Downing et al. 2006; Verpoorter

et al. 2014; Messager et al. 2016).

In this research, we address several gaps in our current

knowledge of GHG emissions from lakes and impound-

ments. First, we estimate GHG emissions from these systems

by combining data on the global distribution of lake size

and productivity with new empirical models linking GHG

emission rates with these variables. Second, we provide

global estimates of all three major GHGs (i.e., CO2, CH4, and

N2O). This is important because, although they may be

reported less frequently than CO2 fluxes, N2O, and CH4 are

more potent GHGs. On a 100-yr time horizon, N2O and CH4

have approximately 265- and 28-times the effect of CO2 on

atmospheric warming, respectively, and these values increase

to 298 and 34 when indirect effects of these GHGs on the

climate are considered (Myhre et al. 2013). Finally, we use

this new analytical approach to assess the sensitivity of len-

tic GHG emission to expected future changes in lake and

impoundment productivity.
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Methods

The general approach was to perform a secondary analysis

(sensu Kiecolt and Nathan 1985) of GHG fluxes and the fac-

tors influencing them (i.e., lake size and trophic status) and

to upscale these relationships to global estimates following

Downing (2009), while using a global, joint lake size

and productivity distribution. Although several global size

distributions have been published (Downing et al. 2006;

Verpoorter et al. 2014; Messager et al. 2016), global produc-

tivity distributions are less well constrained so we derived a

distribution using remotely sensed lake Chl a data from the

best available source (Sayers et al. 2015).

Data collection

We collected previously published GHG flux and ancillary

data from 223 different studies for a total of 8233 system

measurements from at least 54 countries (Supporting Infor-

mation Table S1). About 7637 systems were natural lakes

and 596 were considered impoundments of some type. More

data were available for CO2 than for CH4 and N2O (7824

unique systems for CO2 vs. 561, 144, and 166 with diffusive,

ebullitive, and total CH4 estimates, respectively, and 309 for

N2O). Because we aimed to upscale based on the premise

that productivity and lake-size impact emissions, we also col-

lected nutrient (total phosphorus [TP] and total nitrogen

[TN]), Chl a, and surface area (SA) data when available. The

vast majority of collected water quality and gas flux measure-

ments were made during the warm, open water season and

fluxes were in daily areal units of mg m22 d21. Flux data,

sources, and ancillary variables are available in the Support-

ing Information or at figshare.com/s/c6a4133f3595b67a9816.

Our compilation dataset should not be considered exhaus-

tive as we chose to use data from studies with large and/or

easily accessible datasets as well as containing the ancillary

data necessary for our approach (Supporting Information

Table S1).

Data treatment

All CH4 and N2O flux data we compiled from the litera-

ture were used in our analysis. The compiled CO2 data set

contained an order of magnitude more observations than

the other GHG data sets, however, and was pruned prior to

analysis to reduce the effect of outliers. There are two main

concerns that must be addressed when analyzing large data

sets: (1) that “large patterns” (sensu Ramaswamy et al. 2000)

be identified by analyzing the bulk of the dataset, and (2)

outliers that represent aberrant observations (Yu et al. 2002;

e.g., detect credit card fraud or irregularities in gene expres-

sion) be identified. Because we were interested in determin-

ing characteristic patterns exhibited in a significant portion

of the CO2 emission rates, we pruned this large dataset using

the approach of Ramaswamy et al. (2000). This approach

defines outliers not by the distance from the mean but based

on the distance defined by the kth nearest neighbor to the

mean, where k is defined as a fraction of the dataset, above

and below the mean observation. We thus limited the CO2

data to those observations within the 5th and 95th percen-

tiles of the distribution. The efficacy of the Ramaswamy

et al. (2000) pruning approach is illustrated by the fact that

fitting to the CO2 outliers (i.e., using unpruned data)

resulted in a biased regression analysis that predicted the

three largest lake size bins to be net CO2 sinks, which is

clearly unrealistic (cf., Alin and Johnson 2007). To reduce

heteroskedasticity and normalize model residuals, all data

were log10-transformed prior to analysis and a constant was

added to data sets containing flux values less than or equal to

zero prior to log transformation.

We analyzed the relationship between emission rates and

predictor variables using simple and multiple linear regres-

sion. Candidate predictor variables were lake size, Chl a, TP,

and TN. For each gas and emission mechanism, multivariate

models were constructed for all combinations of size and

one other predictor variable, including their interaction.

Variable selection was conducted using the partial t-statistic

at a significance level of 0.05. The model with the greatest

explanatory power (i.e., r2) and smallest model error (i.e.,

mean absolute error, root mean squared error) for each gas

and emission mechanism was selected as the “best” model

and used for all subsequent analysis and upscaling.

Global lake size and productivity distribution

In order to upscale gas fluxes to global rates, it is neces-

sary to know the worldwide joint distribution of lake size

and productivity. Three size analyses are available that quan-

tify the global size distribution and abundance of lakes and

impoundments (Downing et al. 2006; Verpoorter et al. 2014;

Messager et al. 2016). These analyses were done with differ-

ent methods and yield slightly different global SA and size

distributions. Downing et al. (2006) estimated the global size

and abundance distribution of lakes using data on the largest

systems and a Pareto function to model the remaining sys-

tems. This analysis covered nine logarithmic size categories

from 0.001 km2 to>100,000 km2 (Supporting Information

Table S2). Verpoorter et al. (2014) estimate was created by

applying an automated algorithm to high resolution satellite

imagery of lakes and impoundments, covered eight logarith-

mic size categories, did not include the Caspian Sea, and

could not resolve the smallest (< 0.002 km2) waterbodies.

We determined the total lake SA within each of the eight

size categories by digitizing Fig. 2b of Verpoorter et al.

(2014). We then added a new category for the Caspian Sea

using data from Downing et al. (2006) (Supporting Information

Table S3). Messager et al. (2016) estimated the number and

area of lakes and impoundments in six logarithmic size-

categories (0.1 km2 to>10,000 km2) from their “HydroLAKES”

database created by unifying several GIS databases and calculat-

ing areas of smaller lakes from Pareto distributions. We calcu-

lated the area of lakes<0.1 km2 to match the previous two
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distributions by subtracting the area listed for lakes from

0.1 km2 to>10,000 km2 in Table 1 of Messager et al. (2016)

(2,672,900 km2) from their estimate of the total area of

lakes>0.01 km2 (3,232,200 km2). We further modified the

Messager et al. (2016) distribution by substituting the data in

the largest size category (> 10,000 km2) with the canonical

area of the largest systems reported in Table 2 of Downing

et al. (2006) (Supporting Information Table S4).

We estimated the global distribution of lake productivity

using satellite-based remote sensing measurements of Chl a

on 80,000 lakes around the world, covering the northern

and southern hemispheres (Sayers et al. 2015). The data

divide the world’s lakes into productivity bins of 5 lg L21

width (e.g., 0–5, 5–10, etc. up to 1001). We used these data

to calculate the proportion of global lake and impoundment

SA within each Chl a bin. We then propagated this Chl a

distribution across the Downing et al. (2006), Verpoorter

et al. (2014), and Messager et al. (2016) global size distribu-

tions mentioned above, except for the two largest size bins.

We therefore assumed that each size bin would have the

same Chl a distribution as derived for the world’s lakes,

which is supported by the lack of correlation globally

between lake size and both Chl a and TP in our collected

dataset (Supporting Information Fig. S1). For the two largest

size bins, however, we used literature data to determine the

size and Chl a of the world’s 17 largest systems (Supporting

Information Table S1). The joint size-productivity distribu-

tion is insensitive to error in individual lake Chl a estimates

because the bins are of 5 lg L21 breadth. We defined the

joint distribution of TP and system size by converting Chl a

bins to TP bins using a regression relationship between TP

and Chl a calculated using the global data of McCauley et al.

Table 2. Global carbon emissions (Pg C-CO2eq yr21 for each GHG) from lakes and impoundments and individual contributions to
total radiative forcing from aquatic waterbodies.

Lake size

distribution

Total area

(3 106 km2)

Literature

total*

Traditional

approach

SPW

(95% CI)† CO2
‡ (%) CH4

‡ (%) N2O‡ (%)

Downing et al. (2006) 4.42 1.74 3.29 1.92 (1.37–2.79) 26.1 71.8 2.0

Verpoorter et al. (2014) 5.36 — 4 2.30 (1.62–3.36) 22.9 75.0 2.1

Messager et al. (2016) 3.23 — 2.41 1.25 (0.86–1.84) 19.6 77.8 2.6

* Sum of estimates for CO2 from Tranvik et al. (2009), CH4 from Bastviken et al. (2011), and N2O from Soued et al. (2016) (also listed in Table 1)
and converted to CO2-equivalents.

† SPW estimate with lower and upper 95% CIs in parentheses.
‡ Individual GHG contributions based on SPW approach estimates.

Table 1. Global annual GHG gas emissions according to the traditional and SPW approaches and three different global lake and
impoundment size distributions.

Gas Data source

Upscaling

approach*—emission

mechanism†

Lake size distribution

Downing

et al. (2006)

Verpoorter

et al. (2014)

Messager

et al. (2016)

CO2 (Tg CO2-C yr21) Tranvik et al. (2009) Traditional 810 — —

This work Traditional 740 899 542

SPW 503 (468–541) 525 (491–562) 244 (227–262)

CH4 (Tg CH4-C yr21) Bastviken et al. (2011) Traditional-diffusion 7 — —

Traditional-ebullition 41 — —

Traditional-total 69 — —

This work Traditional-diffusion 43 52 32

Traditional-ebullition 140 170 102

Traditional-total 204 248 149

SPW-diffusion 28 (17–48) 34 (21–57) 18 (11–13)

SPW-ebullition 67 (39–115) 84 (49–144) 47 (28–81)

SPW-total 112 (71–177) 139 (89–221) 78 (50–124)

N2O (Tg N2O-N yr21) Soued et al. (2016) Traditional 0.63 — —

This work Traditional 0.22 0.27 0.16

SPW 0.3 (0.19–0.45) 0.38 (0.24–0.55) 0.26 (0.16–0.38)

* SPW estimates include lower and upper 95% CIs in parentheses.
† If not reported, emission mechanism is diffusion.
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(1989). The resulting joint size-productivity distributions for

the Downing et al. (2006), Verpoorter et al. (2014), and

Messager et al. (2016) lake and impoundment size distribu-

tions are presented in Supporting Information Tables S2–S4.

Upscaling procedures

Size-productivity weighting approach

We used the size and/or productivity model that best

explained the emission rates of the individual GHGs in our

datasets to predict an areal emission rate and 95% confidence

interval (CI) for each unique combination of lake size and pro-

ductivity represented in the three joint size-productivity distri-

butions (i.e., Supporting Information Tables S2–S4). Next, we

multiplied the predicted areal emission rate for each size-

productivity bin by the total SA of the bin, then summed

across productivity bins to find the total amount of gas emitted

daily from each size class. Finally, summing daily emissions

from all size classes and multiplying by 365 provided an annual

global estimate of GHG emissions from lakes and impound-

ments according to the three different size distributions. These

calculations were repeated using the lower and upper 95% CI

of the predicted emission rates, resulting in a 95% CI for the

emission estimate for each gas and lake size distribution. This

95% CI reflects uncertainty in the statistical models used to

predict emission rates, but does not account for uncertainty in

the flux estimates reported in the literature. Spatiotemporal var-

iability (Tranvik et al. 2009; Bastviken et al. 2011) and the use

of different measurement approaches (Deemer et al. 2016) can

add multiple levels of uncertainty to flux estimates. This uncer-

tainty is rarely quantified, however, and is not reflected in the

5% and 95% CI of the statistical models used in this secondary

analysis.

Traditional approach

The traditional approach to upscaling entails multiplying

an average areal emission rate by a global lentic SA estimate

(e.g., Cole et al. 2007; Tranvik et al. 2009; Bastviken et al.

2011). We applied this approach to each GHG using the mean

emission rate calculated from the collection of measurements

used to derive the models described above and scaled that rate

to the globe using each of the three global lake and impound-

ment size distributions described above (Downing et al. 2006;

Verpoorter et al. 2014; Messager et al. 2016).

Results and discussion

Nutrients and lake size drive aquatic CO2 emissions

Out of the diverse candidate models (Supporting Informa-

tion Table S5), the model that best explained CO2 flux

included lake size and TP as well as their interaction (Sup-

porting Information Table S6). CO2 emission rates decreased

with size across all productivity levels (Fig. 1A). CO2 flux was

positively correlated with TP in the smallest systems and

negatively correlated with TP in medium to large-sized sys-

tems, but Chl a was not included in the best CO2 model

(Supporting Information Table S5). TP is likely serving as a

Fig. 1. SPW models for GHG emissions from lakes and impoundments.
(A) CO2 emissions best explained by SA, trophic status via TP, and the
interaction between the two. (B) A linear relationship with Chl a, also a
trophic state proxy, is the best model for total CH4. (C) SA and Chl a
(but no interaction) best explain N2O emissions.
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proxy for watershed inputs of terrestrial materials. High TP

concentrations in smaller lakes typically reflect large water-

shed inputs of water and solutes (Arbuckle and Downing

2001) including terrestrially sourced CO2 and/or dissolved

organic carbon (DOC) (Palviainen et al. 2016). Indeed,

others have found that TP tends to covary with DOC in lakes

(Lapierre and del Giorgio 2012) and that direct inputs of

CO2 (Maberly et al. 2013; Weyhenmeyer et al. 2015) from

the surrounding watershed, as well as inputs of biologically

and photochemically degradable DOC (Lapierre et al. 2013),

drives CO2 concentration in lakes. Thus, the positive correla-

tion between CO2 flux and TP that we observed in the small-

est lakes and impoundments could merely represent the

impact of nutrient and C runoff from the watershed on C

dynamics in the smaller systems, and the negative effect of

TP in larger systems reflects enhanced primary production in

pelagic waters that tends to be more important in those sys-

tems. Our results support previous findings that CO2 dynamics

in the world’s lentic waters are directly impacted by activities

in their watersheds (Tranvik et al. 2009; Regnier et al. 2013)

and that future changes in watershed properties, such as

climate-induced changes to runoff (Milly et al. 2005), can alter

the C balance of the world’s lakes and impoundments.

Productivity-driven aquatic CH4 emissions

The only factor retained in the best models for ebullitive

and total (i.e., diffusive 1 ebullitive) CH4 emission rates was

a positive effect of Chl a (Fig. 1B; Supporting Information

Table S6). Chl a was also positively related to the diffusive

CH4 emission rate, though the strength of the effect was

stronger for large rather than small systems. While previous

studies have reported a positive relationship between Chl a

and CH4 emissions for lakes (Bastviken et al. 2004) and

impoundments (Deemer et al. 2016), this is the first study to

generalize the finding to lentic systems across the globe.

This relationship could arise through several mechanisms,

including the correlation between Chl a and the oxygen-

poor and C-rich environments that favor CH4 production

and often develop in eutrophic systems. There is also evi-

dence that the labile C derived from autochthonous produc-

tion is more readily converted to CH4 than more recalcitrant

allochthonous C sources (West et al. 2012). Our findings sug-

gest that the eutrophication of the world’s lentic ecosystems

could increase global CH4 emissions.

Productivity and lake size influence N2O emissions

In aquatic ecosystems, N2O is produced primarily by the

oxidation and reduction of nitrogen (N) via microbial nitrifi-

cation and denitrification, respectively. Nitrous oxide is one

of several N-species that can be produced by these processes

and rates of N2O production are determined by the overall

rates of de/nitrification and the fraction of de/nitrified N

converted to N2O (i.e., the N2O yield; Davidson et al. 2000).

In this study, we found that N2O emission rates exhibited a

positive relationship with lake size and Chl a (Fig. 1C;

Supporting Information Table S6). Chl a is a proxy for algal

biomass which can serve as a labile carbon source for denitri-

fication and consequent N2O production (Sirivedhin and

Gray 2006; McMillan et al. 2010; Chen et al. 2012). High

algal biomass can also result in hypoxia in the hypolimnia

of stratified lakes, further stimulating denitrification, an

anaerobic process. Finally, Chl a may serve as an indicator of

N loading, which can stimulate both algal growth (McCauley

et al. 1989) and denitrification (Beaulieu et al. 2011).

The positive relationship between N2O emission rate and

lake size has not been previously reported and may be

related to differences in the relative abundance of littoral

and pelagic habitats along the lake size continuum. In gen-

eral, well oxygenated pelagic habitats will favor nitrification,

the aerobic oxidation of ammonium, and will be relatively

more abundant in large lakes, whereas carbon rich littoral

zones will be relatively more abundant in small lakes. Sys-

tematic differences in the rates of de/nitrification and/or the

N2O yield among these habitats could account for the effect

of lake size on N2O emissions. For example, the denitrifica-

tion N2O yield decreases as the relative availability of C to N

increases (Miller et al. 2008); therefore, littoral habitats,

which represent a larger area in smaller lakes, may yield less

N2O than pelagic habitats, which dominate larger lakes.

Regardless of the mechanisms driving the relationship with

lake size and Chl a, our analysis illustrates that these covari-

ates can be used to improve global estimates of N2O emis-

sions from lakes and impoundments.

Upscaling global GHG emissions with size-productivity

weighting

The global lake and impoundment size distribution cho-

sen for upscaling impacted the global emission estimates for

all three GHGs. With the traditional upscaling approach, the

Verpoorter et al. (2014) distribution produced global emis-

sion rates � 22% higher for each gas than when using the

Downing et al. (2006) distribution, which in turn produced

rates � 35% higher than when using the Messager et al.

(2016) distribution (Table 1). This pattern is consistent with

the total SAs predicted by each distribution. We found a sim-

ilar pattern when comparing the size-productivity weighting

(SPW) approach across the three size distributions, except for

CO2 emissions. Despite the fact that Verpoorter et al. (2014)

reports � 22% more total lake and impoundment area than

Downing et al. (2006), there is only a 4% difference in the

global CO2 emissions estimated by SPW from these two dis-

tributions. This is because the Verpoorter et al. (2014) distri-

bution estimates less SA in the smallest class (< 0.01 km2)

than the Downing et al. (2006) distribution, and these small

systems support the highest CO2 emission rates (Fig. 1A).

The SA discrepancy in the small size bins between Ver-

poorter et al. (2014) and the other distributions made more

of a difference in the CH4 and N2O emission estimates, with

the Verpoorter et al. (2014) model reporting significant emis-

sion peaks around the 1 km2 size bin that are not present in
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the other models (Fig. 2, Supporting Information Figs. S2,

S3). Ultimately, all three distributions have their limitations

and criticisms (Verpoorter et al. 2014; Feng et al. 2016; Mess-

ager et al. 2016); therefore, as the Downing et al. (2006) size

distribution provides estimates falling between the two other

distributions, we used it in the following sections for compari-

son between our upscaling approaches and with literature val-

ues that also used the Downing et al. (2006) distribution.

We found differing trends for each GHG when comparing

the traditional upscaling approach to the SPW approach

(Table 1). The traditional approach, when applied to our

data, produced annual emissions � 50% and � 80% higher

than the SPW approach for CO2 and CH4, respectively. Even

the upper 95% CI of the SPW approach was lower than the

corresponding traditional approach estimate for these two

gases, except for diffusive emission of CH4 (Table 1). For

N2O, the SPW approach predicted � 35% higher annual

emissions than the traditional approach. Differences between

the SPW and traditional approaches can be attributed to the

effect of lake size and productivity on GHG emission rates.

These relationships are explicitly incorporated into the SPW

approach, whereas they are ignored by traditional published

calculations. Consequently, we would expect that a simple

multiplication of an average emission rate by global lake and

impoundment area (i.e., the traditional approach) would

yield an inaccurate GHG emission estimate unless the sys-

tems sampled to calculate the average emission rate exhib-

ited a size and productivity distribution identical to that of

the true distribution that exists worldwide.

Lack of a representative mean emission rate is likely what

caused previous global estimates to diverge from that found

using the SPW approach. Tranvik et al.’s (2009) estimate of

810 Tg yr21 CO2 is 62% higher than our mean CO2 estimate,

suggesting that lakes in their dataset were smaller and more

productive than those in our global dataset. Soued et al.’s

(2016) N2O emission estimate of 0.63 Tg yr21 is nearly twice

the mean rate we calculated, suggesting that the lakes in

their dataset must have been larger and more productive

than those in our global dataset. Contrary to the other gases,

our SPW approach resulted in a mean total CH4 emission

rate double that of the literature-derived CH4 emission rate

of 69 Tg yr21 from Bastviken et al. (2011), although our

lower 95% CI estimate is equivalent to their estimate. The

difference in estimates thus suggests that systems included

in the Bastviken et al. (2011) emission rate were much less

productive than those in our global dataset. Our new esti-

mate of CH4 emissions from lakes exacerbates the discrep-

ancy between top-down estimates of natural global CH4

emissions, derived from atmospheric sampling, and bottom-

up estimates that are derived from in situ flux measure-

ments, with bottom-up exceeding top-down estimates by �
60% (Saunois et al. 2016). Saunois et al. (2016) suggests that

much of the discrepancy could be attributed to uncertainty

in the areal extent of inland waters, as demonstrated by the

difference in SPW emission estimates from the three lake-

size distribution models (Table 2). Furthermore, difficulty in

differentiating wetlands from small/shallow lakes may lead

to those systems being double counted in bottom-up esti-

mates. Finally, the accuracy of reported CH4 emission rates

for lakes is sensitive to how ebullition, the dominant CH4

emission pathway in many systems, is measured and inte-

grated into a system-scale estimate. System-scale ebullition

rates can be greatly overestimated if investigators focus on

emission hot spots without accounting for lake areas with

low ebullition rates. This highlights a major limitation of

using the traditional approach for global estimates in which

point measurements are merely averaged and scaled upward.

In general, CO2 and CH4 fluxes can vary by a few orders of

magnitude with size or productivity (Fig. 1) so that a few

divergent fluxes could easily skew a predicted global rate

using the traditional approach (Table 1). Upscaling emis-

sions based on predictors of GHG emission rates, as we did

with the SPW approach, should result in a more accurate

estimate of global fluxes and one that can be upscaled to

diverse regions with divergent lake size and productivity

distributions.

Fig. 2. Annual emissions (Tg Gas yr21) and total SA (km2) per lake size bin according to the Downing et al. (2006) distribution using the SPW

approach for (A) CO2, (B) total CH4, and (C) N2O.
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Our analysis implies an evolving view of the “active pipe”

model (sensu Cole et al. 2007), which describes how lakes

and impoundments store terrestrially carbon in sediments

and emit CO2 to the atmosphere (Fig. 3). As traditional

approaches used improved databases for the calculation of

CO2 emissions, the global role of lakes was amplified sub-

stantially (i.e., Cole et al 2007 vs. Tranvik et al. 2009). Appli-

cation of the SPW approach used here modulates the

estimated role in emissions from 0.81 Pg yr21 (Tranvik et al.

2009) to 0.5 Pg yr21 when weighting global estimates by the

size- and productivity-distributions of the world’s lentic sys-

tems. Although the difference between the SPW estimate

and the estimate of Tranvik et al (2009) seems small, it is

1.5-times the amount of C buried annually by the world’s

oceans and 1=3 of the C delivered annually to the world’s

oceans from the continents. Accounting for important driv-

ers of GHG fluxes can make a substantial difference in the

evaluation of the role of lakes and impoundments in global

GHG flux and atmospheric effects.

The relative contribution of different lake size classes to

GHG emissions differed among the three gases (Fig. 2, Sup-

porting Information Figs. S2, S3). The smaller size classes

had the greatest global CO2 emissions (Fig. 2A), which can

be attributed to the large cumulative SA of small systems

and the negative relationship between CO2 emission rates

and lake size. Areal CH4 emissions were predicted by Chl a,

which has a similar distribution across most lake sizes (Sup-

porting Information Fig. S1), therefore global CH4 emissions

scale with the total SA in each size class (Fig. 2B). Areal N2O

emission rates, on the other hand, increased with both pro-

ductivity and size, resulting in a lack of correlation between

global N2O emission and size class (Fig. 2C). Finally, in all

GHG emission distributions, the size bin in which the US

Great Lakes fall is easily visible by the spike in emissions in

the second to largest size class (Fig. 2). Previous studies have

reported that GHG emissions are greatest for large systems

(Alin and Johnson 2007) or small ones (Holgerson and Ray-

mond 2016), yet the nature of these relationships had not

been heretofore thoroughly resolved. Our analysis shows

that, in terms of GHG emissions, the relative importance of

large and small aquatic systems depends upon which gas is

being considered.

Global C emissions from lakes and impoundments and

their atmospheric potential

We combined the traditional and SPW emission results of

the three GHGs, as well as those from the literature, into

total CO2-equivalent (CO2eq) emissions (using 100-yr time-

frames for CH4 and N2O conversions, including indirect

effects; Myhre et al. 2013) in order to evaluate the role that

lakes and impoundments play in the global C cycle and their

potential impact on the atmosphere and climate. While the

traditional approach suggested a doubling of the literature

value for aquatic CO2eq emissions, global CO2eq emissions

based on our SPW approach were remarkably similar to the

previously reported estimates (Table 2). The combined litera-

ture total of 1.74 Pg C yr21 falls within the 95% CI range of

the SPW estimate for each lake size distribution, but is clos-

est to (just 10% lower than) the Downing et al. (2006) esti-

mate of 1.92 Pg C yr21 (Table 2). Moreover, the 95% CI for

all three lake size distributions overlap suggesting (1) that we

are close to constraining the true aquatic C emission value,

and (2) that using the middle estimate found with the

Downing et al. (2006) distribution is justified for compara-

tive purposes.

Interestingly, even though the upscaling estimates using

the Verpoorter et al. (2014) and Messager et al. (2016) distri-

butions were somewhat higher and lower than the Downing

et al. (2006) estimate, respectively, all three distributions

revealed that CH4 has the greatest atmospheric influence of

the GHGs being emitted from lakes and impoundments. On

average, CH4 accounts for 75% of total CO2eq emissions,

while CO2 and N2O account for 23% and 2%, respectively

(Table 2). Despite CO2 being emitted from lakes and

impoundments at rates about four times higher than CH4

(Table 1), the enhanced climate change potential of CH4

implies that it is responsible for three times more of the radi-

ative forcing by lentic systems globally than CO2. Although

N2O is about 300-times more potent in the atmosphere than

CO2 (on a 100-yr time scale), aquatic N2O emissions from

lakes and impoundments appear to have a small effect.

Ultimately, we found a global CO2eq emission estimate

similar to that reported in the literature, but the traditional

approach used to calculate those literature values misattrib-

uted the majority of the CO2eq emission to CO2. By using

an approach based on the drivers of GHG emission rates, we

found that CH4 may be the dominant climate change-

related gas being emitted from lentic systems. Similar results

were indicated in a recent global synthesis of emissions of all

three GHGs from impoundments (Deemer et al. 2016) and

together these findings support the conclusion that the pro-

ductivity of lakes and impoundments plays an important

Fig. 3. Evolving view of the “active pipe” model first proposed by Cole
et al. (2007). Values represent annual transport of C (Pg) and emissions
to atmosphere are for lakes and impoundments.
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role in the alteration of Earth’s climate. However, because

productivity enhances GHG emissions but the global Chl a

distribution used in our analysis did not exceed 100 lg L21

(Supporting Information Tables S2–S4), our estimate of the

global role of lakes and impoundments is conservative. Fur-

thermore, as a result of ongoing global change, the warming

of lakes globally has already been observed (O’Reilly et al.

2015), as has the continued eutrophication of inland waters,

despite concerted efforts to thwart it (Smith et al. 2014). If

eutrophication leads to shifts in the GHG balance of lentic

systems toward the more potent CH4, then we will conse-

quently see an increase in the impact that these systems

have on the climate.

To estimate the potential impact of continued eutrophica-

tion on the GHG emissions of lakes and impoundments, we

incremented our joint size-Chl a distributions (Supporting

Information Tables S2–S4) by 1 lg L21, 5 lg L21, and 10 lg

L21 and calculated the CO2eq emission of these simulated

conditions using the SPW models. This analysis suggests that

these moderate levels of enhanced eutrophication could

increase the atmospheric effect of GHGs emitted from lakes

and impoundments by 5%, 26%, or 42%, respectively (Sup-

porting Information Table S7). This increased emission

would be equivalent to around 1 Pg CO2eq yr21 or about

13% of the effect of the current global emission of CO2 by

the combustion of fossil fuels, and about equal to the excess

CO2 emissions to the atmosphere from global land use

change (Ciais et al. 2013).

Further improvement of aquatic C emission upscaling

The accuracy of our predicted GHG emissions from lentic

systems is limited in part by the availability of data on the

global distribution of key limnological variables. For exam-

ple, while the Sayers et al. (2015) Chl a distribution repre-

sents an important advancement in the mapping of

limnological variables at the global scale, the distribution

has a maximum Chl a value of 100 lg L21, whereas GHG

flux rates have been reported from hypereutrophic systems

with Chl a concentrations in excess of 700 lg L21 (Support-

ing Information Fig. S1). Therefore, we are likely underesti-

mating GHG emissions because the most eutrophic lentic

systems are not accounted for. This bias could be significant

for some regions, such as the 1.1 million km2 Southern

Plains ecoregion of the United States where 25% of the lakes

have Chl a in excess of 100 lg L21 (USEPA 2017). This effect

is also likely to be more important for N2O and CH4 than

CO2 emissions because Chl a was a stronger covariable for

those GHGs. In this study, we estimated TP from the Sayers

et al. (2015) Chl a distribution, thereby allowing us to

upscale CO2 emissions using the CO2 � TP model, which

explained more of the variation in CO2 emission rates than

the CO2 � Chl a model. However, CO2 emission estimates

could be improved by better global mapping of TP in lakes

and impoundments. Another source of variability in

modeled global emission estimates arises because of the dis-

agreement among published global lake and impoundment

distributions. We used three distributions for our analyses,

but others can be found in the literature (e.g., Feng et al.

2016). Further, these distributions tally only permanently

wetted environments and ignore the likely large influence of

seasonally flooded ecosystems. Until a consensus is reached

on the global area and size distribution of lakes and

impoundments, the global lentic GHG emission estimate

will remain sensitive to the chosen SA distribution model.

The accuracy of the emission estimate is also limited by

methodological constraints, particularly for CH4. Ebullition

can be the dominant CH4 emission pathway, especially in

smaller systems, yet our ability to accurately measure this

flux is hampered by its spatiotemporal variability and diffi-

culty in assessing ebullition rates at the system scale (e.g.,

Beaulieu et al. 2016). Much work is still needed to suffi-

ciently address this issue. The geographic distribution and

temporal resolution of reported GHG emission rates also lim-

its the representativeness of global annual estimates. A sub-

stantial fraction of the global data is from studies in the

boreal biome, and more measurements are needed across a

range of lake sizes and trophic levels from poorly studied

regions of the world. In addition, the global flux models we

found may not be the best ones for lakes or impoundments

on a regional basis. For example, differing emission drivers

have been found for CO2 emissions from lakes across various

regions of Canada (Lapierre and del Giorgio 2012) and the

United States (Lapierre et al. 2017). Another important gap is

the relative lack of data that represent annual emissions (cf.,

Jones et al. 2016). Most available data in our analysis repre-

sent the open water/summer season and do not include large

emissions that can occur during ice-out (Michmerhuizen

et al. 1996; Striegl et al. 2001; Karlsson et al. 2013) or turn-

over (Kankaala et al. 2007; Schubert et al. 2012; Beaulieu

et al. 2015). For example, the ventilation of accumulated

gases during ice-out constitutes on average 17% and 27% of

annual emissions of CO2 and CH4, respectively (Denfeld

et al. unpubl.). While not directly considered here, our

approach for scaling daily rates to annual rates may some-

what compensate for this. As previous publications have

done, we multiplied daily rates by 365 to arrive at annual

rates, which implicitly assumes that emissions continue to

occur during periods of ice cover. While this assumption is

likely inaccurate, ice-out emissions represent GHGs that

were produced and stored during periods of ice cover; there-

fore, our assumption that emission occurs year-round may

compensate for the poor coverage of ice-out emission in the

literature. Nevertheless, improved temporal resolution of

measurement campaigns will reduce uncertainty in upscaled

emission estimates. Finally, predictive models may be further

improved through the inclusion of other environmental

covariables that predict GHG emission rates from lakes and

impoundments at the global scale. For example, global maps
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of climate, land use, and soil variables are available and

could be used for upscaling if empirical relationships with

GHG emissions could be demonstrated.

Conclusions

Here, we offer the first joint global analyses of all GHGs

emitted from both lakes and impoundments. We found that

lake size and productivity are important drivers of emission

rates and used these drivers in creating new, global estimates

of GHG fluxes from lakes and impoundments. This analysis

indicates that lentic systems are important sources of GHGs

driving climate change, but concludes that CH4 emissions

may be of disproportionate importance due to their link

with lake/impoundment productivity and the high potency

of CH4 as a GHG. While we expect that as data availability

evolves that our understanding of the role of lentic waters in

the global GHG budget will as well, we suggest that linking

emission rates with important drivers is a path toward a

more accurate understanding of their global GHG role. Our

study shows that GHG emissions from lakes and impound-

ments are equivalent to � 20% of global fossil fuel CO2

emission (9.3 Pg C-CO2 yr21; Le Qu�er�e et al. 2016) and that

emissions will rise even further with the continued eutrophi-

cation of Earth’s lentic ecosystems.
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